Chemistry 101 Laboratory Fall 2005 -2006

Lecture 3 Effect of Limiting the Concentration of a Reactant

- To determine the limiting reactant in a salt mixture
- To observe the effects of a limiting reactant.
- To manipulate calculations involving ions concentration.

Limiting Reactants

Example: How many bicycles can be assembled from the parts shown?

The limiting part is the number of pedal assemblies.

A maximum of three bicycles can be assembled

Limiting Reactants (cont'd)

Limiting reagent: is the reactant that limits the amount of products formed.

Example:

a- How many moles of ammonia can be produced by reacting 8.00 moles of nitrogen with 18.0 moles hydrogen?

 $N_2 + 3H_2 \longrightarrow 2NH_3$ n_{N2} needed to react with 18.0 mol. Hydrogen = 18.0 mol. $H_2 \times 1 \text{ mol. } N_2 = 6.00 \text{ mol } N_2$ $3 \text{ mol. } H_2$

8.00 mol. $N_2 > 6.00$ mol. $N_2 (N_2 \text{ is in excess})$ Therefore hydrogen is limiting. Or (second method)

 n_{NH3} formed = 18.0 mol H₂ x <u>2 mol. NH₃</u> 3 mol. H₂ = 12.0 mol.

b- Calculate the mass of ammonia formed.

Mass of $NH_3 = 12.0 \text{ mol. x } \frac{17.03 \text{ g}}{\text{I mol}} = 204 \text{ g}$

c- Calculate the mass of excess reactant. n_{N2} reacted = 6.00 mol. n_{N2} in excess = 8.00 - 6.00 = 2.00 mol. Mass of N₂ = 2.00 mol x <u>28.01 g</u> = 56.0 g 1 mol.

Solutions

A **solution** is a homogenous mixture of 2 or more substances

The **solute** is(are) the substance(s) present in the smaller amount(s)

The **solvent** is the substance present in the larger amount

Concentration of Solutions

 The concentration of a solution is the amount of solute present in a given quantity of solvent or solution.

- Expression of concentration:
- ✓ percent by mass: g solute/100g solution
- ✓ percent by volume: mL solute/100mL solution
- ✓ Molarity (molar concentration):

Molarity = mol. solute/volume(L) solution M = n / V

Examples

1- How many moles are there in 5.0mL of 0.50M sodium carbonate ?

 $M = n / V , n = M \times V$ n = 0.50 mol/L x (5.0 x 10⁻³ L) = 2.5 x 10⁻³mol

Examples (cont'd)

2- How many grams of calcium chloride are needed to prepare 1.0L of 0.50M solution ?

M = n / V , $n = M \times V$ $n = 0.50 \text{ mol/L} \times 1.0 \text{ L} = 0.50 \text{ mol.}$ n = mass / molar mass , $\text{mass} = 0.50 \text{ mol} \times 111.1 \text{ g/mol} = 56 \text{ g}$

Concentration of ions in salts that dissociate completely Examples :

1- $CaCl_{2}(s) \xrightarrow{H_{2}O} Ca^{2+}(aq) + 2Cl^{-}(aq)$ In 1M CaCl₂ solution: $[Ca^{2+}] = 1M$ $[Cl^{-}] = 2M$

2- Na₂CO₃(s) <u>H₂O</u> 2 Na⁺(aq) + CO₃²⁻(aq) In 0.50M Na₂CO₃ solution: [Na⁺] = 2 x 0.50 = 1.0M $[CO_3^{2-}] = 0.50M$

Examples (cont'd)

3- How many moles of Na⁺ ions are there in 5.0 ml of 2.0M sodium carbonate (Na₂CO₃)?

n of sodium carbonate = $M \times V$ = 2.0 mol/L x (5.0 x 10⁻³L) = 0.010 mol

n of Na⁺ = 2×0.010 mol = 0.020 mol

Experiment

Na₂CO₃₍aq) + CaCl₂(aq) \longrightarrow CaCO₃(s) + 2NaCl(aq) white Net ionic equation : Ca⁺⁺(aq) + CO₃²⁻(aq) \longrightarrow CaCO₃(s)

- Label 5 test tubes of the same diameter.
- Pipet 10 mls of sodium carbonate(M_1) and 10 mls of calcium chloride (M_2) in the first tube.
- Repeat by varying M_1 and M_2 .

Relate the height of the solid $CaCO_3$ to the amount of the limiting reagent.

Report

Table 1

Tube No.	Using 10ml a Concentr Na ₂ CO ₃	each with ration of: CaCl ₂	Comparative Volume of Precipitate Formed*	Millimoles of Na $_2$ CO $_3$ in 10ml of Solution Used	Millimoles of CaCl ₂ in 10ml of Solution Used	Calculated Millimoles of CaCO ₃ formed
1	1 M	1 M				
2	1 M	0.5 M				
3	0.5 M	0.5 M	Reference (x cm)			
4	0.5 M	1 M				
5	0.5 M	0.1 M				

Report (cont'd)

Table II

Decantate of test tube no.	Added solution	Observation	Conclusion (Ion in excess)