Chemistry 101 Laboratory Fall 2005-2006

Lecture 3

Effect of Limiting the
Concentration of a Reactant

Purpose

- To determine the limiting reactant in a salt mixture
- To observe the effects of a limiting reactant.
- To manipulate calculations involving ions concentration.

Limiting Reactants

Example: How many bicycles can be assembled from the parts shown?

The limiting part is the number of pedal assemblies.

A maximum of three bicycles can be assembled

Limiting Reactants (cont'd)

Limiting reagent: is the reactant that limits the amount of products formed.
Example:
a- How many moles of ammonia can be produced by reacting 8.00 moles of nitrogen with 18.0 moles hydrogen?
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$
$\mathrm{n}_{\mathrm{N} 2}$ needed to react with 18.0 mol. Hydrogen $=$ $18.0 \mathrm{~mol} . \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} . \mathrm{N}_{2}}{3 \mathrm{~mol} . \mathrm{H}_{2}}=6.00 \mathrm{~mol} \mathrm{~N}_{2}$
$8.00 \mathrm{~mol} . \mathrm{N}_{2}>6.00 \mathrm{~mol} . \mathrm{N}_{2}\left(\mathrm{~N}_{2}\right.$ is in excess)
Therefore hydrogen is limiting.

Or (second method)

$\mathrm{n}_{\mathrm{H} 2}$ needed to react with $8.00 \mathrm{~mol} . \mathrm{N}_{2}=$ $8.00 \mathrm{~mol} \mathrm{~N}_{2} \times 3 \mathrm{~mol} . \mathrm{H}_{2}=24.0 \mathrm{~mol} \mathrm{H}_{2}$ $1 \mathrm{~mol} \mathrm{~N}_{2}$
18.0 mol. $\mathrm{H}_{2}<24.0 \mathrm{~mol} . \mathrm{H}_{2}$

Therefore hydrogen is the limiting reagent.
$\mathrm{n}_{\mathrm{NH} 3}$ formed $=18.0 \mathrm{~mol} \mathrm{H}_{2} \times \underline{2 \mathrm{~mol} . \mathrm{NH}_{3}}$ $3 \mathrm{~mol} . \mathrm{H}_{2}$

$$
=12.0 \mathrm{~mol} .
$$

b- Calculate the mass of ammonia

 formed.Mass of $\mathrm{NH}_{3}=12.0 \mathrm{~mol} \times \frac{17.03 \mathrm{~g}}{\mathrm{I} \mathrm{mol}}=204 \mathrm{~g}$
c- Calculate the mass of excess reactant. $\mathrm{n}_{\mathrm{N} 2}$ reacted $=6.00 \mathrm{~mol}$.
$\mathrm{n}_{\mathrm{N} 2}$ in excess $=8.00-6.00=2.00 \mathrm{~mol}$.
Mass of $\mathrm{N}_{2}=2.00 \mathrm{~mol} \times 28.01 \mathrm{~g}=56.0 \mathrm{~g}$ 1 mol .

Solutions

A solution is a homogenous mixture of 2 or more substances

The solute is(are) the substance(s) present in the smaller amount(s)

The solvent is the substance present in the larger amount

Concentration of Solutions

- The concentration of a solution is the amount of solute present in a given quantity of solvent or solution.
- Expression of concentration:
\checkmark percent by mass: g solute/100g solution
\checkmark percent by volume: mL solute $/ 100 \mathrm{~mL}$ solution
\checkmark Molarity (molar concentration):
Molarity $=$ mol. solute/volume(L) solution

$$
\mathbf{M}=n / V
$$

Examples

1- How many moles are there in 5.0 mL of 0.50 M sodium carbonate?

$$
\begin{aligned}
\mathrm{M} & =\mathrm{n} / \mathrm{V}, \quad \mathrm{n}=\mathrm{M} \times \mathrm{V} \\
\mathrm{n} & =0.50 \mathrm{~mol} / \mathrm{L} \times\left(5.0 \times 10^{-3} \mathrm{~L}\right) \\
& =2.5 \times 10^{-3} \mathrm{~mol}
\end{aligned}
$$

Examples (cont'd)

2- How many grams of calcium chloride are needed to prepare 1.0 L of 0.50 M solution?
$\mathrm{M}=\mathrm{n} / \mathrm{V} \quad, \quad \mathrm{n}=\mathrm{M} \times \mathrm{V}$
$\mathrm{n}=0.50 \mathrm{~mol} / \mathrm{L} \times 1.0 \mathrm{~L}=0.50 \mathrm{~mol}$.
$\mathrm{n}=\mathrm{mass} / \mathrm{molar}$ mass ,
$\mathrm{mass}=0.50 \mathrm{~mol} \times 111.1 \mathrm{~g} / \mathrm{mol}=56 \mathrm{~g}$

Concentration of ions in salts that dissociate completely

Examples:
1- $\mathrm{CaCl}_{2}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{Cl}(\mathrm{aq})$
In $1 \mathrm{M} \mathrm{CaCl}{ }_{2}$ solution: $\left[\mathrm{Ca}^{2+}\right]=1 \mathrm{M}$

$$
\left[\mathrm{Cl}^{-}\right]=2 \mathrm{M}
$$

2- $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \quad 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}$-(aq) In $0.50 \mathrm{M} \mathrm{Na} \mathrm{NO}_{3}$ solution: $\left[\mathrm{Na}^{+}\right]=2 \times 0.50$

$$
\begin{gathered}
=1.0 \mathrm{M} \\
{\left[\mathrm{CO}_{3}{ }^{2}-\right]=0.50 \mathrm{M}}
\end{gathered}
$$

Examples (cont'd)

3- How many moles of Na^{+}ions are there in 5.0 ml of 2.0 M sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$?
n of sodium carbonate $=\mathrm{M} \mathrm{x} \mathrm{V}$
$=2.0 \mathrm{~mol} / \mathrm{L} \times\left(5.0 \times 10^{-3} \mathrm{~L}\right)=0.010 \mathrm{~mol}$
n of $\mathrm{Na}^{+}=2 \times 0.010 \mathrm{~mol}=0.020 \mathrm{~mol}$

Experiment

$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{CaCl}_{2}(\mathrm{aq}) \longrightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})$ white
Net ionic equation :
$\mathrm{Ca}^{++}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \longrightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$

- Label 5 test tubes of the same diameter.
- Pipet 10 mls of sodium carbonate $\left(\mathrm{M}_{1}\right)$ and 10 mls of calcium chloride $\left(\mathrm{M}_{2}\right)$ in the first tube.
- Repeat by varying M_{1} and M_{2}.

Relate the height of the solid CaCO_{3} to the amount of the limiting reagent.

Report

Table 1

Tube No.	Using 10 ml each with a Concentration of: $\mathrm{Na}_{2} \mathrm{CO}_{3} \quad \mathrm{CaCl}$		Comparative Volume of Precipitate Formed*	Millimoles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 10 ml of Solution Used	Millimoles of CaCl_{2} in 10 ml of Solution Used	Calculated Millimoles of CaCO_{3} formed
1	1 M	1 M				
2	1 M	0.5 M				
3	0.5 M	0.5 M	Reference (x cm)			
4	0.5 M	1 M				
5	0.5 M	0.1 M				

Report (cont'd)

Table II

Decantate of test tube no.	Added solution	Observation	Conclusion (Ion in excess)

